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Abstract

The present study is concerned with the theoretical analysis of the effects of nonlinear viscous damping on

vibration isolation of single degree of freedom (sdof) systems. The concept of the output frequency response function

(OFRF) recently proposed by the authors is applied to study how the transmissibility of a sdof vibration isolator depends

on the parameter of a cubic viscous damping characteristic. The theoretical analysis reveals that the cubic nonlinear

viscous damping can produce an ideal vibration isolation such that only the resonant region is modified by the

damping and the non-resonant regions remain unaffected, regardless of the levels of damping applied to the system.

Simulation study results demonstrate the validity and engineering significance of the analysis. This research work has

significant implications for the analysis and design of viscously damped vibration isolators for a wide range of practical

applications.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of vibration isolation is to control unwanted vibrations so that the adverse effects are kept
within acceptable limits. Transmissibility is a concept widely used in the design of vibration isolators to
measure the vibration transmission at different frequencies.

In a vibration isolation device, viscous damping is often introduced to reduce vibration amplitude at
resonance. However, if the effect of the introduced viscous damping is basically linear, as the damping level is
increased to reduce the transmissibility in the resonant region, the transmissibility is increased in the region
where isolation is required. As a result, the range of frequencies where vibration isolation can be achieved is
reduced. This is a well-known dilemma associated with viscously damped vibration isolator design [1]. In
order to resolve this problem, engineers have developed many techniques such as the ‘‘sky hook’’ and other
active vibration isolators where, for example, the linear viscous damping effect is automatically switched off to
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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minimize the transmissibility levels in the isolation region [2,3]. However, as far as we are aware, there is no
approach which can systematically address this important problem using a passive viscously damped vibration
isolation device.

In order to resolve this problem, the authors have recently proposed the introduction of nonlinear viscous
damping to provide a vibration isolation solution and have conducted a series of studies on this subject [4–8].

In Ref. [4], based on the Volterra series theory of nonlinear systems, an analytical relationship between the
output frequency response and the nonlinear viscous damping characteristic parameters was derived for a
single degree of freedom (sdof) spring damper system to provide a theoretical basis for this study. In Ref. [5],
the result in Ref. [4] was extended to nonlinear systems that can be described by a general polynomial form
differential equation model, and a concept known as the output frequency response function (OFRF) was
proposed.

It is well known that exact closed-form analytic solutions of nonlinear differential equations are possible
only for a limited number of special classes of differential equations. Consequently, in traditional nonlinear
structural analysis, different approaches such as harmonic balance [9], perturbation and averaging
methods [10,11] were often used to produce approximate solutions. The harmonic balance method is
based on the assumption that the system time domain response can be expressed in the form of a Fourier
series, and is usually used to study nonlinear systems whose output responses are periodic in time.
Perturbation and averaging methods are used to obtain an approximate solution such that the approxi-
mation error is small and the approximate solution is expressed in terms of equations simpler than the
original equation. The advantage of the recently developed OFRF and associated results is that these
new methods can reveal how the output frequency response of a wide class of nonlinear systems depends on
the model parameters that define the system nonlinearity. This can considerably facilitate the frequency
domain analysis and design of nonlinear structural systems including systems with nonlinear viscous damping
devices.

By using an OFRF based approach, a nonlinear engine mount was analyzed in Ref. [6]. The nonlinear
damping design issue was addressed from the perspective of control system design using the OFRF
approach and nonlinear control system theory in Ref. [7], where some advantages of nonlinear viscous
damping were also demonstrated by simulation studies. The study in Ref. [8] applied the basic idea in Ref. [4]
but focused on the case of sdof vibrating systems with a cubic viscous damping characteristic. Simulation
examples were used to demonstrate how nonlinear viscous damping affects the system behavior at the
resonant frequency.

In one respect, these previous studies establish an OFRF based theory for the study of the effect of
nonlinearities on the output frequency response of nonlinear structures including nonlinearly damped
structural systems. In another respect, certain beneficial effects of nonlinear viscous damping are
demonstrated by numerical simulation studies. In order to further develop these research results, the authors
realized that there is a need to apply the OFRF based theory to nonlinear viscous damping systems to
comprehensively prove significant effects of nonlinear viscous damping on vibration isolation and
theoretically confirm conclusions that have so far only been obtained by specific simulation studies. In our
opinion, this is a starting point for establishing solid theoretical results for the analysis and design of nonlinear
viscously damped structures.

To achieve this objective, a novel theoretical analysis is introduced in the present study. Based on the
OFRF concept, the study first derives an analytical relationship between the transmissibility and the
nonlinear characteristic parameter of sdof viscously damped vibration isolators with a cubic damping
curve. Then it is rigorously proved that the introduction of a cubic viscous damping characteristic can
produce an ideal vibration isolation such that ‘‘There is little damping in the isolation region but con-
siderable damping around the isolator’s natural frequency’’ [12] so as to achieve the required
transmissibility and reduced amplification at resonance at the same time. Finally, the results of
numerical simulations are used to demonstrate the validity and engineering significance of the con-
clusions reached by the theoretical analysis. This research study is of significance in solving the problems
with linear viscous damping model based analysis and design and, therefore, has significant implications
for the analysis and design of viscously damped vibration isolators for a wide range of practical
applications.
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2. Sdof vibration isolators with a nonlinear damping characteristic

Consider the sdof vibration isolator system shown in Fig. 1, where

f IN ðtÞ ¼ A sinðOtÞ (1)

is the harmonic force acting on the system with frequency O and magnitude A, fOUT(t) is the force transmitted
to the supporting base, which is assumed to be perfectly immobile, i.e., has infinite impedance, and z(t) is the
displacement of the mass. For simplicity of analysis, assume that the vibration isolator has a linear spring and
a cubic damping characteristic as indicated in the figure so that the equations of motion of the sdof vibration
isolator system are given by

M €zðtÞ þ C1 _zðtÞ þ C2½_zðtÞ�
3 þ KzðtÞ ¼ f IN ðtÞ ¼ A sinðOtÞ

f OUT ðtÞ ¼ KzðtÞ þ C1 _zðtÞ þ C2½_zðtÞ�
3

(
(2)

where K and C1, C2 are the spring and viscous damping characteristic parameters of the system, respectively.
In order to conduct an analysis which is not specific to particular choices of M and K, denote

t ¼ O0t (3)

where O0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
is the resonant frequency of the system,

Ō ¼
O
O0

(4)

and

xðtÞ ¼ zðtÞ ¼ z
t
O0

� �
(5)

and write the first equation in Eq. (2) into a dimensionless form as

€yðtÞ þ x1 _yðtÞ þ x2½ _yðtÞ�
3 þ yðtÞ ¼ sinðŌtÞ (6)

where

yðtÞ ¼
KxðtÞ

A
(7)

x1 ¼
C1ffiffiffiffiffiffiffiffiffi
KM
p (8)

x2 ¼
C2A

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKMÞ3

q (9)
M

C1(.)+C2(.)3K

fIN (t) = Asin�t

fOUT (t)

z (t)

Fig. 1. Single degree of freedom vibration isolator system with a cubic nonlinear viscous damping characteristic.
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Let

uðtÞ ¼ sinðŌtÞ (10)

y1ðtÞ ¼ yðtÞ (11)

y2ðtÞ ¼ y1ðtÞ þ x1 _y1ðtÞ þ x2½ _y1ðtÞ�
3 (12)

Then, the sdof vibration isolator system (2) can be described as a dimensionless, one input two output
system as

€y1ðtÞ þ y2ðtÞ ¼ uðtÞ

y2ðtÞ ¼ y1ðtÞ þ x1 _y1ðtÞ þ x2½ _y1ðtÞ�
3

(
(13)

From Eqs. (2), (5), (7)–(9), and (11), it can be shown that

f OUT ðtÞ

A
¼

KzðtÞ þ C1 _zðtÞ þ C2½_zðtÞ�
3

A
¼ y1ðtÞ þ x1 _y1ðtÞ þ x2½ _y1ðtÞ�

3 ¼ y2ðtÞ (14)

Therefore, denote TðŌÞ as the force transmissibility of the sdof isolator system (2) in terms of the normalized
frequency Ō. Then

TðŌÞ ¼ jY 2ðjŌÞj (15)

where Y 2ðjŌÞ is the spectrum Y2(jo) of the second output of system (13) evaluated at frequency o ¼ Ō.
Therefore the transmissibility of the sdof isolator system (2) can be studied by investigating the spectrum of
the second output of system (13).

In the next section, the OFRF of system (13) which provides an explicit, analytical relationship between
Y2(jo) and the system nonlinear viscous damping characteristic parameter x2 is derived to facilitate the
analysis of the force transmissibility of the sdof isolator system (2). This result is then used in Section 4 to
reveal the significant effects of nonlinear viscous damping on the performance of vibration isolating systems.
3. Representation of the force transmissibility using the OFRF

The OFRF is a concept recently proposed by the authors in Ref. [5] for the study of the output frequency
response of nonlinear Volterra systems.

Nonlinear Volterra systems represent a wide class of nonlinear systems whose input output relationship can
be described by a Volterra series model over a regime around a stable equilibrium [13,14]. For nonlinear
Volterra systems which can equally be described by a polynomial type nonlinear differential equation model
which has been widely used for the modeling of practical physical systems, it has been shown in Ref. [5] that
the system output spectrum can be represented by an explicit polynomial function of the model parameters
which define the system nonlinearity. This result is referred to as the OFRF, which provides a significant
analytical link between the output frequency response and the nonlinear characteristic parameters for a wide
range of practical nonlinear systems.

In the following, the OFRF concept will be applied to the case of the one input two output system (13) to
produce an analytical polynomial relationship between the spectrum of the system’s second output Y2(jo) and
the nonlinear characteristic parameter x2. Because Y2(jo) is related to the force transmissibility TðŌÞ of system
(2) via Eq. (15), the result, in fact, provides an OFRF based analytical expression for TðŌÞ.

According to Ref. [15], it is known that when subject to a sinusoidal input

uðtÞ ¼ sinðŌtÞ ¼ cosðŌt� p=2Þ (16)
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the spectra of the outputs of system (13) are given by

Y JðjoÞ ¼
XN

n¼1

1

2n

X
o1þ���þon¼o

H ðJÞn ðjo1; . . . ; jonÞĀðo1Þ; . . . ; ĀðonÞ J ¼ 1; 2 (17)

In Eq. (17)

ĀðoiÞ ¼

e�jp=2 when oi ¼ Ō

ejp=2 when oi ¼ �Ō

0 otherwise

8><
>: i ¼ 1; . . . ; n (18)

N is the maximum order of nonlinearity in the Volterra series expansion of the system outputs given by

yJðtÞ ¼
XN

n¼1

Z 1
�1

� � �

Z 1
�1

hðJÞn ðt1; . . . ; tnÞ
Yn

i¼1

uðt� tiÞdti J ¼ 1; 2 (19)

with hðJÞn ðt1; . . . ; tnÞ, J ¼ 1,2, denoting the nth order Volterra kernel, and

H ðJÞn ðjo1; . . . ; jonÞ ¼

Z 1
�1

� � �

Z 1
�1

hðJÞn ðt1; . . . ; tnÞ e
�ðo1t1þ���þontnÞj dt1; . . . ; dtn J ¼ 1; 2 (20)

are the definition of the nth order generalized frequency response function (GFRF) [16] between the input and
the first and second outputs of system (13), respectively.

The specific expression of H ðJÞn ðjo1; . . . ; jonÞ, J ¼ 1,2, can be obtained by applying the results in Ref. [17] to
the case of the one input two output nonlinear differential model (13) to yield

H
ð2Þ
1 ðjo1Þ ¼ ð1þ jx1o1ÞH

ð1Þ
1 ðjo1Þ (21)

H ð2Þn ðjo1; . . . ; jonÞ ¼ �ðjo1 þ � � � þ jonÞ
2H ð1Þn ðjo1; . . . ; jonÞ n ¼ 2; . . . ;N (22)

H
ð1Þ
1 ðjo1Þ ¼ �

1

L½jo1�
(23)

H
ð1Þ
3 ðjo1; jo2; jo3Þ ¼ x2

Q3
i¼1H

ð1Þ
1 ðjoiÞðjoiÞ

L½jðo1 þ � � � þ o3Þ�
(24)

H
ð1Þ
2n̄þ1ðjo1; . . . ; jo2n̄þ1Þ ¼ xn̄

2

Q2n̄þ1
i¼1 H

ð1Þ
1 ðjoiÞðjoiÞ

L½jðo1 þ � � � þ o2n̄þ1Þ�

XNn̄

Z¼1

Ȳn�1
i¼1

ðjoZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ

L½joZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
�

n̄ ¼ 2; . . . ; bðN � 1Þ=2c (25)

H
ð1Þ
2n̄ ðjo1; . . . ; jo2n̄þ1Þ ¼ 0 n̄ ¼ 1; 2; . . . ; bðN � 1Þ=2c (26)

where

L½jðo1 þ � � � þ onÞ� ¼ �fðjo1 þ � � � þ jonÞ
2
þ ðjo1 þ � � � þ jonÞx1 þ 1g

jn̄
i ; i ¼ 1; . . . ; n̄� 1; 2 f3; 5; . . . ; 2n̄� 1g for n̄X2

oZ
liðj̄Þ
; i ¼ 1; . . . ; n̄� 1; j̄ ¼ 1; . . . ; jn̄

i ; 2 fo1; . . . ;o2n̄þ1g for n̄X2 (27)

Nn̄ is an n̄ dependent integer, and b(N�1)/2c is the floor function indicating the largest integer less than or
equal to (N�1)/2.

From (17) and the expression for H ð2Þn ðjo1; . . . ; jonÞ given by Eqs. (21)–(25), the spectrum Y2(jo) of the
second output of system (13) can be written as

Y 2ðjoÞ ¼ P0ðjoÞ þ P1ðjoÞx2 þ P2ðjoÞx
2
2 þ � � � þ PbðN�1Þ=2cðjoÞx

bðN�1Þ=2c
2 (28)
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where

P0ðjoÞ ¼ H
ð2Þ
1 ðjoÞĀðoÞ (29)

Pn̄ðjoÞ ¼
ð�1ÞðjoÞ2

22n̄þ1L½jo�

X
o1þ���þo2n̄þ1¼o

Y2n̄þ1

i¼1

H
ð1Þ
1 ðjoiÞðjoiÞĀðoiÞ

" #XNn̄

Z¼1

Ȳn�1
i¼1

ðjoZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ

L½joZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
�

n̄ ¼ 1; . . . ; bðN � 1Þ=2c (30)

XN1

Z¼1

Y1�1
i¼1

ðjoZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ

L½joZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
�
¼ 1 (31)

Eq. (28) is the OFRF of system (13), which represents the spectrum of the system’s second output as an explicit
polynomial function of the nonlinear characteristic parameter x2. Obviously this explicit analytical expression
for the output spectrum can considerably facilitate the analysis of the effect of the system nonlinearity on the
system output frequency response.

By using the OFRF Eq. (28), the transmissibility of the sdof isolator system (2) as given by Eq. (15) can
further be expressed as

TðŌÞ ¼ P0ðjŌÞ þ
XbðN�1Þ=2c
n̄¼1

Pn̄ðjŌÞx
n̄
2

�����
����� (32)

where

P0ðjŌÞ ¼ �
ð1þ jx1ŌÞ

LðjŌÞ
(33)

Pn̄ðjŌÞ ¼
ðŌÞ2n̄þ3H

ð1Þ
1 ðjŌÞ H

ð1Þ
1 ðjŌÞ

��� ���2n̄

22n̄þ1L½jŌ�

X
o1þ���þo2n̄þ1¼Ō

XNn̄

Z¼1

Ȳn�1
i¼1

ðjoZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ

L½joZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
�

¼ �
ðŌÞ2n̄þ3

22n̄þ1fL½jŌ�g2jL½jŌ�j2n̄

X
o1þ���þo2n̄þ1¼Ō

XNn̄

Z¼1

Ȳn�1
i¼1

ðjoZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ

L½joZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
�

n̄ ¼ 1; 2; . . . ; bðN � 1Þ=2c (34)

and ok 2 f�Ō; Ōg, k ¼ 1; . . . ; 2n̄þ 1.
From (32), it is known that when x2 ¼ 0, i.e., there is no nonlinear viscous damping,

TðŌÞ ¼ jP0ðjŌÞj ¼
ð1þ jx1ŌÞ

½1þ jx1Ōþ ðjŌÞ
2
�

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx1ŌÞ

2

ð1� Ō2
Þ
2
þ ðx1ŌÞ

2

s
(35)

which is the expression of transmissibility widely used in engineering practice for the design of linear sdof
vibration isolators.

When nonlinear viscous damping is introduced, i.e., x2a0, Eq. (32) indicates that the transmissibility will be
different from the well-known result given by Eq. (35) and, given the linear viscous damping characteristic
parameter x1, the difference as described by the second term in Eq. (32) is a function of both the nonlinear
viscous damping characteristic parameter x2 and Ō. In the next section, TðŌÞ given by Eq. (32) over the
frequency ranges of Ō51 and Ōb1, and the effect of x2 on the value of TðŌÞ over the frequency range of
Ō � 1 will be analyzed theoretically to comprehensively reveal the significant benefits of nonlinear viscous
damping on vibration isolation.
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4. The effects of nonlinear viscous damping on vibration isolation

Consider the sdof vibration isolators subject to a sinusoidal force excitation as described by Eq. (2). Assume
that the outputs of the isolator’s dimensionless, one input two output system representation given by Eq. (13)
can be described by the nonlinear Volterra series model (19) around zero equilibrium. Then the following
proposition regarding the force transmissibility TðŌÞ of the sdof vibration isolators holds.

Proposition 1. (i) When Ō51 or Ōb1,

TðŌÞ � jP0ðjŌÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx1ŌÞ

2

ð1� Ō
2
Þ
2
þ ðx1ŌÞ

2

s
(36)

(ii) When Ō � 1, there exists a x̄40 such that

d½TðŌÞ�2

dx2
o0 (37)

if 0ox2ox̄.

Proof. See Appendix A.

The two conclusions of Proposition 1 reveal considerable beneficial effects of nonlinear viscous damping on
vibration isolation, which, as far as we are aware of, have never been realized before. Conclusion (i) indicates
that a cubic nonlinear viscous damping characteristic has almost no effect on the transmissibility of sdof
vibration isolators over both low and high frequency ranges where the frequencies are much lower or much
higher than the isolator’s resonant frequency. Conclusion (ii) indicates that an increase in the cubic nonlinear
viscous damping effect can reduce the transmissibility over the resonant frequency range. These are very ideal
effects for vibration isolation. An effective exploitation of these effects can provide a novel solution to the
aforementioned well-known dilemma associated with the design of passive linear viscously damped vibration
isolators.

5. Simulation studies and discussion

In order to demonstrate the effects of nonlinear viscous damping on vibration isolation, which have been
theoretically analyzed above, numerical simulation studies were conducted for the dimensionless, one input
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Fig. 2. The force transmissibility of system (2) under linear viscous damping characteristics where x2 ¼ 0. Solid: x1 ¼ 0.1; dotted: x1 ¼ 0.4;

dashed: x1 ¼ 0.7.
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Fig. 3. The force transmissibility of system (2) under nonlinear viscous damping characteristics where x1 ¼ 0.1. Solid: x2 ¼ 0; dotted:

x2 ¼ 0.2; dashed: x2 ¼ 0.4.
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x2 ¼ 0.2; dashed: x2 ¼ 0.4.
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two output system (13) to evaluate how the transmissibility TðŌÞ changes with the linear and nonlinear viscous
damping characteristic parameters x1 and x2. The results are given in Figs. 2–5.

Fig. 2 shows the transmissibility TðŌÞ in the three linear viscous damping cases of x1 ¼ 0.1, 0.4 and 0.7. This
is basically a well-known result and indicates that an increase of the linear viscous damping characteristic
parameter x1 can reduce TðŌÞ and consequently suppress the vibration at the resonant frequency where Ō � 1.
However, the increase of x1 is detrimental for vibration isolation over the isolation frequency range ðŌb1Þ.

Figs. 3–5 all show the transmissibility TðŌÞ in the three cubic nonlinear viscous damping cases of x2 ¼ 0, 0.2
and 0.4. However, the linear viscous damping characteristic parameter x1 for the results presented in the three
figures is different. x1 ¼ 0.1, 0.2 and 0.4 are used for the results in Figs. 3–5, respectively to demonstrate the
effect of the linear viscous damping characteristic parameter x1 on the analysis result. All the results clearly
indicate that the increase of the nonlinear viscous damping characteristic parameter x2 cannot only reduce
TðŌÞ and suppress the vibration at the resonant frequency Ō � 1, but also keep TðŌÞ almost unchanged over
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the frequency ranges of Ōb1 and Ō51 compared with the case where no nonlinear viscous damping
characteristic is introduced. In addition, the beneficial effects of x2 on TðŌÞ do not change with the change of
the linear viscous damping parameter x1. These are exactly the conclusions of Proposition 1.

The effects of nonlinear viscous damping on transmissibility TðŌÞ as theoretically proved in the last section
and numerically demonstrated in Figs. 3–5 can be qualitatively interpreted using Eq. (32) from the perspective
of the system resonance and resonant frequency.

Eq. (32) shows that when cubic nonlinear viscous damping is introduced into the sdof system (2), the
transmissibility TðŌÞ is determined by a sum of many terms. The first of these terms is P0ðjŌÞ as given by
Eq. (33), which is the transmissibility TðŌÞ when x2 ¼ 0, i.e., no nonlinear viscous damping is introduced into
the system. A general expression for the other terms is given by Eq. (34), and it can be observed from this
equation that j1=LðjŌÞj2n̄þ2 basically dominates the effects of these terms on TðŌÞ. According to Eq. (23),
j1=LðjŌÞj2n̄þ2 is the magnitude of the first linear FRF of the dimensionless system representation (13)
evaluated at frequency o ¼ Ō raised to power ð2n̄þ 2Þ. Therefore, over the frequency ranges of Ōb1 and
Ō51 where the original system (2) works far below or beyond the resonant frequency O0, j1=LðjŌÞjo1 and
j1=LðjŌÞj2n̄þ2 is considerably less than j1=LðjŌÞj for n̄X1. This implies that apart from the first term
P0ðjŌÞ ¼ �ð1þ jx1ŌÞ=LðjŌÞ, the effect of all the terms in Eq. (32) on the transmissibility TðŌÞ can be
neglected in this case. Consequently TðŌÞ � jP0ðjŌÞj, i.e., the first conclusion of Proposition 1 holds.

Over the frequency range of Ō � 1, the magnitude of the first FRF of system (13) reaches its resonance. In
this case, j1=LðjŌÞj41, j1=LðjŌÞj2n̄þ2 is considerably larger than j1=LðjŌÞj for n̄X1, and the transmissibility
TðŌÞ is determined by the contributions of all terms in Eq. (32). Consequently, the cubic nonlinear viscous
damping parameter x2 has a significant effect on the transmissibility TðŌÞ. Because x240 is determined by
coefficient C2 of the cubic damping term of the original system, the physical impact of the increase of x2 is that
a larger damping force is produced. Therefore, the increase of x2 will reduce the transmissibility TðŌÞ when
Ō � 1. This is just the second conclusion of Proposition 1.

The beneficial effects of nonlinear viscous damping can also be interpreted from a physical perspective as
follows. It is obvious that a cubic viscous damping term actually produces a very small damping force at small
velocities and a considerable damping force at large velocities. Clearly, at the system resonance where Ō � 1,
the relative velocity between the mass and supporting base is largest; but over the isolation range where Ōb1,
the relative velocity is much smaller. Therefore, the effect of a cubic viscous damping term on vibration
isolation is significant over the region of resonant frequency Ō � 1 but is much less and even negligible over
the isolation range ðŌb1Þ. These are again the conclusion of Proposition 1.
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The effects of nonlinear viscous damping on vibration isolation that have been revealed in the present study
have considerable significance in engineering practice. In order to demonstrate this significance, consider, for
example, the design of vibration isolators made of metal springs. According to Ref. [18], the engineering
design procedure for the isolators basically involves:
(1)
 Find the weight W of the machine to be isolated and the lowest forcing frequency fL of the machine.

(2)
 Determine the required degree of isolation IR or transmissibility TR ¼ 1�IR at frequency fL. For example,

IR ¼ 90% implies that 90% of the original vibration at frequency fL should be suppressed by the isolator,
or the transmissibility of the vibrating system at frequency fL should be TR ¼ 1�IR ¼ 10%.
(3)
 Assume there is little damping with springs, i.e., x1E0, and determine the system resonant frequency f0
from Eq. (35) with T ¼ TR, Ō ¼ OL=O0 ¼ 2pf L=2pf 0 ¼ f L=f 0, i.e., TR ¼ 1=ðf 2

L=f 2
0 � 1Þ in this case to

yield f 0 ¼ f L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR=ðTR þ 1Þ

p
. ffiffiffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffiffiffiffiffip
(4)
 Assume that the spring is linear, determine its stiffness K from f 0 ¼ K=M=2p ¼ Kg=W=2p to yield
K ¼ 4p2f 2

0W=g, and use the result to select a spring from a manufacturer’s catalog for the vibration
isolator.
(5)
 Because springs possess very little damping, the transmissibility at the resonance can be very high if a
spring designed above is directly used for vibration isolation. So the damping lacking in the designed
spring is often obtained in this step by placing a viscous damper in parallel with the spring to reduce the
system transmissibility at the resonant frequency to a desired level.
The problem with this traditional design procedure is that the isolation range of the vibrating system where TpTR

as determined by the designed spring will be impaired by step (5) if a linear viscous damper is used in this step to
reduce the system transmissibility at the resonant frequency. This phenomenon can clearly be observed from Fig. 2,
if the design steps (1)–(4) literally produce a system with the transmissibility corresponding to x1 ¼ 0.1 (this x1 can
be, e.g., a linear viscous damping effect inherent with the designed spring), but step (5) increases the system linear
viscous damping effect from x1 ¼ 0.1 to 0.7. It can be seen from Fig. 2 that if TR ¼ �9dB, the isolation range as
determined by the designed spring is f/f0X2 where TpTR ¼ �9dB. However, although step (5) can considerably
reduce the transmissibility to about 5dB at the resonant frequency f/f0 ¼ 1, the actual isolation range where
TpTR ¼ �9dB is reduced to f/f0X2.6 by the increase of the linear viscous damping effect.

The techniques available for addressing this problem with linear viscous damping include ‘‘sky hook’’ methods and
automatic damping switch-off techniques etc., which are almost all based on an active solution. However, the analysis
in the present study indicates that the introduction of nonlinear viscous damping can produce a passive solution to
the problem so as to considerably save costs and avoid the complexity associated with fully active control. It can be
seen from Fig. 3 that if the design steps (1)–(4) are used to produce a system with the transmissibility corresponding to
x1 ¼ 0.1, but a nonlinear viscous damping term corresponding to x2 ¼ 0.4 is then introduced to reduce the system
transmissibility to about 5dB over the frequency range of f/f0E1, then the actual isolation range of the system where
TpTR ¼ �9dB is still about f/f0X2, which is the same as in the case where no additional damping effects are
introduced. Therefore, the introduction of cubic nonlinear viscous damping can completely overcome the problems
associated with the increase of linear viscous damping effects to suppress resonant vibration. This demonstrates that
an ideal vibration isolation, which involves a little damping in the isolation region but a required damping around the

resonant frequency, can be achieved by using a cubic nonlinear viscous damping characteristic.
The implementation of nonlinear viscous damping can be achieved by a proper design of the characteristic

of a passive viscous damper. According to our discussions with experts in industry, such designs can be
realized by damper manufacturers using available technology. The authors are also currently studying MR
damper techniques [19,20] to develop an experimental system to experimentally demonstrate the significant
effects of nonlinear viscous damping as theoretically revealed in the present study. The results will be reported
in a future publication. In fact, nonlinear viscous damping has already been used in engineering practice. For
example, automotive dampers have always been meticulously designed to be nonlinear [21]. Therefore, some
practising engineers may have realised the benefits of nonlinear dampers in some specific applications.
However, it is in the present study that the significant effects of nonlinear viscous damping on vibration
isolation have been clearly pointed out, rigorously proved by theoretical analysis, and comprehensively
demonstrated by simulation studies.
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6. Conclusions

Vibration isolation is a very important problem for a wide range of engineering practice. The conventional
design of viscously damped vibration isolators is often concerned with the determination of the stiffness and
damping characteristic parameters in a linear sdof vibration isolator model. A well-known dilemma associated
with the design is that although the introduction of a linear viscous damping effect can significantly reduce the
transmissibility over the range of the system resonant frequency, the linear damping effect is often detrimental
for vibration isolation over the range of the system normal working frequencies. In order to solve this
problem, active vibration control solutions often have to be used which may considerably increase the system
costs and complexities.

To address the problem with active vibration control devices, a series of studies have been conducted by the
authors to investigate the use of nonlinear viscous damping to provide an effective passive solution. The
present study is concerned with a further development of these previous results and is mainly focused on a
comprehensive theoretical analysis of the beneficial effects of nonlinear viscous damping on vibration
isolation. The analysis indicates that a nonlinear viscous damper with a positive cubic damping term has no
the detrimental effects in the isolation region but adds considerable damping around the isolator’s natural
frequency so as to achieve an ideal transmissibility characteristic over the whole frequency range. This implies
that a vibration isolator with a nonlinear viscous damping characteristic can also achieve the desired vibration
isolation that can be achieved by an active device. Simulation studies demonstrate the validity and engineering
significance of these results. The conclusions reached by the present study have significant implications for the
engineering design of passive vibration isolators in a wide range of practical applications.

Future publications will focus on the investigation of the effect of more complicated nonlinear viscous
damping characteristics on vibration isolation to extend the results achieved in the present study to more
general cases.

Finally it is worth mentioning that damping which is not of a viscous type such as damping with rubbers has
no the detrimental effects associated with linear viscous dampers [22]. Therefore, it should be emphasized that
the results achieved in the present study are significant for the analysis and design of viscously damped
vibration isolators. Viscously damped vibration isolators including, for example, shock absorbers for bridges
and vehicles have a wide range of applications in engineering practice.
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Appendix A. Proof of Proposition 1

Substituting Eq. (27) into Eq. (34) for L[.] yields

jPn̄ðjŌÞj ¼
ðŌÞ2n̄þ3

22n̄þ1 ðjŌÞ2 þ x1ðjŌÞ þ 1
�� ��2n̄þ2
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Ȳn�1
i¼1

ðjoZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ

ðjoZ
lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ
2
þ x1ðjoZ

lið1Þ
þ � � � þ joZ

liðj
n̄
i Þ
Þ þ 1

������
������

p
ðŌÞ2n̄þ3

22n̄þ1 ðjŌÞ2 þ x1ðjŌÞ þ 1
�� ��2n̄þ2

�
X

o1þ���þo2n̄þ1¼Ō

XNn̄

Z¼1
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þ � � � þ joZ
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n̄
i Þ
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i Þ
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(A.1)
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Therefore, when Ō51

jPn̄ðjŌÞjp
ðŌÞ2n̄þ3

22n̄þ1jðjŌÞ2 þ x1ðjŌÞ þ 1j2n̄þ2
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where

C1ðn̄Þ ¼
X

o1þ���þo2n̄þ1¼Ō

XNn̄

Z¼1

Ȳn�1
i¼1

ðjoZ
lið1Þ
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i Þ
Þ

Ō

�����
�����

is a bounded constant which is n̄ dependent but independent of Ō. So that, when Ō51

jPn̄ðjŌÞjp
ðŌÞ3n̄þ2

22n̄þ1
C1ðn̄Þ � 0 for n̄ ¼ 1; 2; . . . ; bN=2� 1c (A.3)

Consequently, Eq. (36) holds.
When Ōb1, it is known from Eq. (38) that

jPn̄ðjŌÞjp
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where
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XNn̄

Z¼1
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is another bounded constant which is n̄ dependent but independent of Ō. So that, when Ōb1

jPn̄ðjŌÞjp
1

22n̄þ1Ō
3n̄

C2ðn̄Þ � 0 for n̄ ¼ 1; 2; . . . ; bN=2� 1c (A.5)

Consequently, Eq. (36) also holds. Thus conclusion (i) of the proposition is reached.
To prove Eq. (37), express ½TðŌÞ�2 as

½TðŌÞ�2 ¼ P0ðjŌÞ þ
XbðN�1Þ=2c
n̄¼1

Pn̄ðjŌÞx
n̄
2

" #
P0ð�jŌÞ þ
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Pn̄ð�jŌÞxn̄
2

" #

¼
X2bðN�1Þ=2c

n¼0

xn
2

Xn
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PqðjŌÞPn�qð�jŌÞ (A.6)

and evaluate d½TðŌÞ�2=dx2 from Eq. (A.6) to yield

d½TðŌÞ�2

dx2
¼ Re½P0ðjŌÞP1ð�jŌÞ� þ x2

X2bðN�1Þ=2c

n¼2

nxn�2
2

Xn

q¼0

PqðjŌÞPn�qð�jŌÞ (A.7)
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When Ō � 1,

d½TðŌÞ�2

dx2
¼ Re½P0ðjÞP1ð�jÞ� þ x2
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2
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PqðjÞPn�qð�jÞ (A.8)

From Eqs. (33) and (34), it can be obtained that

P0ðjÞ ¼
1þ jx1

LðjÞ
¼

j � x1
�ðj2 þ jx1 þ 1Þ

¼
�x1 þ j

�jx1
¼
�ð1þ x1jÞ

x1

P1ð�jÞ ¼
6

23L2ð�jÞjLð�jÞj2
¼

3=4

½ð�jÞ2 � jx1 þ 1�2jð�jÞ2 � jx1 þ 1j2
¼
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x41
so that

Re½P0ðjÞP1ð�jÞ� ¼ �
3

4x51
o0

Therefore, when Ō � 1,

d½TðŌÞ�2

dx2
¼ �

3
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X2bðN�1Þ=2c

n¼2
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2
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PqðjÞPn�qð�jÞ (A.9)

Eq. (A.9) implies that when Ō � 1, there must exist a x̄40 such that if 0ox2ox̄.

d½TðŌÞ�2

dx2
¼ �

3

4x51
þ x2

X2bðN�1Þ=2c

n¼2

nxn�2
2

Xn
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PqðjÞPn�qð�jÞo0 (A.10)

that is, conclusion (ii) of the proposition holds. &
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